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ON CONVECTION IN STELLAR ATMOSPHERES FAR FROM
LOCAL THERMODYNAMIC EQUILIBRIUM
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Abstract. Non-thermal effects generated by sub-photospheric convection are considered. It is shown
that convective cells are destroyed by shocks generated when convective velocities reach the speed
of sound. Terminologically this process is given the name of ‘sonic-boom-interrupted convection’.
An estimate is made on the dependence of convective velocities on stellar parameters. It is suggested
that the process being investigated could explain why some stars do not belong to any branch of the
theoretical Hertzsprung-Russell diagram.

1. Introduction

An attempt is made to explain the simultaneous occurrence of emission lines,
strong blue continuum and violent macroscopic movements in the atmospheres
of some giant stars and other objects. Scarce evidence is available on the origin
of high-speed motions. In the present approach they are thought to be connected
to large-scale sub-photospheric convection, assuming that the violent sub-pho-
tospheric convection breaks into shock waves, thereby generating non-thermal
processes in the atmosphere. We shall first consider the conditions under which
shock waves are directly generated by convection.

Electrodynamic processes can produce non-thermal effects if a hydro-
dynamically driven dynamo-mechanism is supposed to generate a strong sub-
photospheric magnetic field. In this case, it is assumed that (a) the appearance of
non-thermal phenomena is not only indirectly connected to strong sub-pho-
tospheric convection but the sudden dissipation of field energy can be brought
about directly by hydrodynamic processes, and (b) non-thermal phenomena
appear as a consequence of the interaction between the magnetic field and the
violent convection. Biermann (1948) suggested a special way in which shock
waves and non-thermal effects of mechanical origin can be generated. In his
model the mean radial fluctuation of convective velocities turns into shock
waves. However, this theory, in which the velocities are supposed to be low
compared to the speed of sound, is unable to account for high-energy flares since
the velocity fluctuations could never transport thousand times the value of the
total energy radiated from a quiet star. This model does not seem to work for
stellar atmospheres which are far from being in thermodynamic equilibrium.
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2. A New Aspect of the Generation of Shock Waves

In the earlier conceptions the top of the outer convective zone is taken to be a
layer in which the density and temperature are the same as those of the
convective cells. Upon reaching the photosphere, the material of the convective
elements mixes with that of the environment which is in radiative equilibrium. It
can be shown (Grandpierre, 1977) that there are given physical conditions under
which the convective transfer will cease in a manner different from the way
described above. Let us now examine in detail the physical background which
causes the convection to cease.

According to the Schwarzschild criteria there exists an interval, given as
r,<r<r, (see Figure 1), which is in convective instability. In this interval the
ascending convective cells are accelerated at an increasing rate by a growing
buoyant force. The rate of acceleration starts to decrease in the interval
r,<r<r; and at r; the buoyant force goes to zero. Inert convective elements
which overshoot this point are gradually stopped by the negative buoyant force
acting in the interval r; <r <r,. Dissipative effects are neglected in the above
consideration.

Convective cells can be accelerated to the speed of sound before reaching the
interval of the negative buoyant force if the actual temperature gradient
‘sufficiently’ differs from the adiabatic gradient (see Figure 2). Although some
investigators (e.g., Hoyle and Schwarzschild, 1955) have already pointed out that
in some stars convective velocities could reach the speed of sound, no in-

N

Trad

Tad

r1 r2 r3 r

Fig. 1. Temperature distribution when convection ceases with zero velocity; r is the distance from
the centre of the star.
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Fig. 2. Temperature distribution in the case of sonic-boom-interrupted convection.

ferences have been made concerning the effect of the onset of shock waves on
convection when velocities reach the threshold of a sonic boom. It is now
assumed that the convective cells are destroyed by the shocks so that the
material of the moving elements is promptly mixed with that of their environ-
ment. Let us now see this process in detail.

The ascending convective elements which start to move at subsonic velocity
are more and more accelerated by the buoyant forces while the density,
frictional forces and the speed of sound decrease outwards. However, as the
velocities approach the threshold Mach number M =1, there is a sudden
increase in the frictional forces (Figure 3) and convective cells conserving their
kinetic energy run into the sharp front of high friction. This sonic boom destroys
the inner organization of the convective cells and the shocks generate surfaces
with abrupt changing thermodynamic parameters. This means that the density
and temperature perturbations are unbalanced; thus the local thermodynamic
equilibrium (LTE) is being destroyed. The convection ceases to be a macros-
copically organized large-scale flow. The material of convective cells mixes with
that of the environment. The surplus internal energy and the kinetic energy
transported by convection turn into shock energy heating the atmosphere.

Let us now estimate the order of the temperature gradient required by the
convective velocities to reach the speed of sound over a pathlength /, assumed to
be identical with the mixing length. The buoyant force is given by the expression

F=ApgV=pVa, (1
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M=1 =V
M Vo

Fig. 3. The rapid growth of the non-dimensional drag coefficient Cp, in the vicinity of Mach number
M =1 (see Cox and Crabtree, 1965).

where p is the density of the convective cells, Ap the density difference between
the convective cells and their environment, g the gravitational acceleration, and
V and a are, respectively, the volume and acceleration of the convective cells,
where

a=—"g. 2)

In the absence of ionization, we have

Ap AT

p T~ (3)

where T is the temperature of the convective cells and AT is the temperature
difference between the convective cells and their environment. Assuming uni-
form acceleration, we can write
AT
2_n~8271
V=255 gl )
where v is the velocity of the convective elements. The temperature difference,
expressed in terms of the actual superadiabatic gradient (SAG,.) has the form

_[(4T) _(dT) |_
ar=t|(§5)_ (), <1590
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If we substitute (5) for (4) and put v>=v2=yRT, where v, is the speed of
sound, v is the ratio of the specific heats and % is the universal gas constant, the
critical value of the superadiabatic gradient at which the convective velocities
can reach the speed of sound is obtained as

SAG.; = yRT?*(2gl%) . (6)
Thus, the condition of sonic-boom-interrupted convection can be expressed as
SAG,, > SAG; . (7

(dT/dr),y can be evaluated from spectroscopic observations by use of the
well-known relation

dT\ _ _gpy-—1
(dr)ad— L, ®)

where w is the mean molecular weight. This relation also permits SAG, to be
calculated. If we assume some realistic value for the mixing length, an estimate
can be made of SAG,;,. As we have no observational evidence on (d7T/dr),.
except for the Sun, relation (7) is tested for solar granulae.

If, for example, we take [ = 1000 km (the mean diameter of the granulae) and
T=75%x10°K with g=3x10cms™?, we obtain the critical superadiabatic
gradient of the solar granulae as SAG,; = 10° K cm™'. Observational data give
SAG,,=2x10*K cm™. Now, if we take into account that Equation (6) under-
estimates the value of SAG,,;, it seems that the result is consistent with the fact
that solar granulae move at a velocity of 1-2km s™' in the atmosphere having a

local speed of sound of 7 km ™.

3. Theoretical and Observational Arguments

Convective elements can be accelerated to the speed of sound if they remain
optically thick when reaching the photosphere, since optically thin convective
elements impart their surplus internal energy to their environment and mix with
the photospheric matter (see, e.g., Henyey, 1965). Schwarzschild (1975) has
shown that there are some red giants in which convective elements could remain
optically thick even as they approach the photosphere.

Moreover, sound waves produced by turbulent convection do not essentially
dissipate the kinetic energy of the convective elements. This fact is confirmed by
Lighthill’s conclusion (1967) that sound of a given frequency can only be
generated by eddies that are too small in relation to the acoustic wavelength to
radiate efficiently.

Observations show that there are some stars with atmospheres in which
convection actually reaches the speed of sound. Wright’s observational data
(1955) listed in Table I show that in the tabulated stars there are some high
macroturbulent velocities which can be treated in terms of sonic or supersonic
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TABLE I

Macroturbulent velocity

Star Spectral class (kms™H
p Leonis Blib 8
¢ Canis Majoris B211 7
55 Cygni B31a 6
v Geminorum Alrv 13
a Cygni A21a 22
6 Canis Majoris F81a 9
n Aquilae F6-G3 8

velocities. At this point, it seems necessary to note that in the atmosphere of a
typically hot O star the speed of sound is below 20 km ™!, so that it could be
thought that convective velocities might exceed the local speed of sound in the
atmosphere of some stars. However, as we have already shown, sonic boom
prevents convective velocities in stellar atmospheres from becoming supersonic,
and no convective velocities can exceed the speed of sound in this case. The
high velocities given in Table I need further analysis by taking into account the
deviations of the atmospheric conditions from both hydrostatic and ther-
modynamic equilibria.

4. Estimate of Convective Velocities

Let us now formulate the dependence of convective velocities on stellar
parameters.

The energy flux transported by convection can be expressed (Reddish, 1974)
by

F=%=2x108 9)

pv AT

I.L b
where Q is the internal.energy. Assuming that convective energy transport is
dominant in the convective zone, we can write

F=L/4nRY), (10)

where L is the luminosity and R the radius of the star. By making use the
equation of state, p. = (k/uH)p.T., where k is Boltzmann’s constant, H is the
mass of the hydrogen atom, p., T, and p, are, respectively, the central pressure,
temperature and density of the star, Equation (9) can be rewritten in the form

H AT p
F=2Xx10*=p,. =v. 11
kPeT o0 (11)

By use of the integral theorems of equilibrium (Chandrasekhar, 1957), the central
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pressure can be estimated as

3 GM?

pc:a@ R4 ’

(12)

where @ =1, G is the gravitational constant and M and R are the mass and
radius of the star, respectively. By Equations (9), (11) and (12) we get

o« kIR T
PEIXICHGM T p (13)

For massive stars having convective cores, the mass—luminosity relation is given
by the Stromgren theorem as

Lo« M3, (14)

Thus, Equations (10), (13) and (14) can be used to estimate the velocity in terms
of T/T and p./p as

v o MR L2 £ (15)
T p

This dependence means that on giant stars with high central temperatures the
convection in the atmosphere can be interrupted by a sonic boom since the
velocity of the convection can grow to a very high value due to its proportional
increase to that of M, R? and T.. It has to be noted here that high values of these
parameters can be simultaneously present, and for this reason there must be high
convective velocities in some giant stars where convection is expected to cease
as a consequence of sonic boom. In the case of red giants the characteristic
dimensions of the convective zone and of convective cells are large and the
convective elements can remain optically thick (see Schwarzschild, 1975). This
estimate of convective velocities agrees with Wright’s observational results,
showing high macroturbulent velocities for some giant stars (Table I).

5. Conclusions

In the computation of a stellar model there are parameters which cannot be
derived from observations, so that we must estimate their value by use of
assumptions. In fact, as the conditions in stellar atmospheres are affected by
sub-photospheric convection, any estimate of the missing data is difficult.

If we want to consider in the stellar atmospheres the cessation of convective
transfer because of sonic boom, the considerations concerning the surface
conditions of the stellar model must be revised. We have to take into account
that the inner energy and the kinetic energy of convective cells, which are high
and comparable with each other at precisely the speed of sound, are transported
to the photosphere by shock waves in the case of sonic-boom-interrupted
convection. For this reason the surface temperature of such stars is expected to
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be higher than that of stars in which convection ceases with zero velocity. The
structure of the former — let us call them SB stars — are substantially different from
those of normal stars. The existence of these SB stars is suggested by the
discrepancies in the fit of the theoretical H-R diagram to the observational
diagram. The flare stars below the Main sequence present problems in that they
are not interpretable in terms of the contractive stellar model (Hayashi, 1966).
There are quantitative inconsistencies of the theory with observations of Popu-
lation I 5 M, stars (where M, is the mass of the Sun) which are attributed to the
uncertainties in the convective flow parameters (Iben, 1967).

The statistical occurrence of SB stars as inferred from these discrepancies
seems to be low. On the other hand, it is known that the H-R diagram is
computed with the use of some important free parameters and with arbitrary
adjustments of the theory to observations so that some of the stars classified as
normal are actually SB stars. The fitting procedure is not always sound: for
example, the efficiency of convection, which is in very close connection with
convective velocities, is chosen as a free parameter to fit the blue and red
supergiant branches of the cluster h and y Persei to the observational H-R
diagram (Hayashi, 1962). On the other hand, just some supergiants could be
qualified as SB stars.

The strong blue continuum, the emission lines and the violent macroscopic
motions can be interpreted by sonic-boom-interrupted convective transfer in
stellar atmospheres. A study of T-Tauri stars and flare stars (Grandpierre, 1981)
suggests that the convection in their atmospheres ceases with sonic boom. The
interpretation of stellar spectra in terms of the proposed model requires the
study to be continued in more detail.
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